The monitoring of infrastructure assets using sensor networks is becoming increasingly prevalent. A digital twin in the form of a finite element model, as used in design and construction, can help make sense of the copious amount of collected sensor data. This paper demonstrates the application of the statistical finite element method (statFEM), which provides a consistent and principled means for synthesising data and physics-based models, in developing a digital twin of a self-sensing structure. As a case study, an instrumented steel railway bridge of 27.34 m length located along the West Coast Mainline near Staffordshire in the UK is considered. Using strain data captured from fibre Bragg grating (FBG) sensors at 108 locations along the bridge superstructure, statFEM can predict the `true' system response while taking into account the uncertainties in sensor readings, applied loading and finite element model misspecification errors. Longitudinal strain distributions along the two main I-beams are both measured and modelled during the passage of a passenger train. The digital twin, because of its physics-based component, is able to generate reasonable strain distribution predictions at locations where no measurement data is available, including at several points along the main I-beams and on structural elements on which sensors are not even installed. The implications for long-term structural health monitoring and assessment include optimisation of sensor placement, and performing more reliable what-if analyses at locations and under loading scenarios for which no measurement data is available.


翻译:使用传感器网络监测基础设施资产的情况正在日益普遍。设计和建造中使用的限定要素模型形式的数字双人关系可以帮助理解所收集的传感器数据数量之多。本文件展示了统计有限要素方法(STAFEM)的应用情况,该方法为综合数据和物理模型提供了一种一致和原则性的方法,为综合数据和物理模型提供了一种综合数据与物理模型的模型,开发了自遥感结构的数码双胞胎。作为案例研究,在英国斯塔福德郡附近的西海岸干线沿线,一座27.34米长的仪器制钢铁铁路桥梁被考虑。在桥顶结构的108个地点,利用从纤维布拉格(FBG)传感器收集的紧张数据,StaFEM可以预测“真实”系统的反应,同时考虑到传感器阅读、应用装装装和限定要素模型的错误。两种主要I-波束沿线的纵向压力分布在客运列通过期间被测量和模拟。由于基于物理学的组件,数字双能够对一些甚至没有进行结构定位的测测算地点进行合理的压力分布预测,在结构测测测测点和测测程中,在几个地点进行测算和测算。

0
下载
关闭预览

相关内容

一图掌握《可解释人工智能XAI》操作指南
专知会员服务
58+阅读 · 2021年5月3日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
胶囊网络资源汇总
论智
7+阅读 · 2018年3月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
胶囊网络资源汇总
论智
7+阅读 · 2018年3月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员