There is little knowledge available on the spatial behaviour of urban tourists, and yet tourists generate an enormous quantity of data (Big Data) when they visit cities. These data sources can be used to track their presence through their activities. The aim of this paper is to analyse the digital footprint of urban tourists through Big Data. Unlike other papers that use a single data source, this article examines three sources of data to reflect different tourism activities in cities: Panoramio (sightseeing), Foursquare (consumption), and Twitter (being connected). Tourist density in the three data sources is compared via maps, correlation analysis (OLS) and spatial self-correlation analysis (Global Moran's I statistic and LISA). Finally the data are integrated using cluster analysis and combining the spatial clusters identified in the LISA analysis in the different data sources. The results show that the data from the three activities are partly spatially redundant and partly complementary, and allow the characterisation of multifunction tourist spaces (with several activities) and spaces specialising in one or various activities (for example, sightseeing and consumption). The case study analysed (Madrid) reveals a significant presence of tourists in the city centre, and increasing specialisation from the centre outwards towards the periphery. The main conclusion of the paper is that it is not sufficient to use one data source to analyse the presence of tourists in cities; several must be used in a complementary manner.
翻译:与使用单一数据来源的其他文件不同,本文章审查了三个数据来源,以反映城市旅游者的空间行为,然而,游客在访问城市时生成了大量数据(大数据),这些数据来源可用于通过活动跟踪城市存在情况。本文件的目的是通过大数据分析城市旅游者的数字足迹。与使用单一数据来源的其他文件不同,本篇文章审查了三个数据来源,以反映城市的不同旅游活动:全美(观光)、四斯夸尔(消费)和Twitter(连接);三个数据来源的游客密度通过地图、相关分析(OLS)和空间自我协调分析(Global Moran's I Statical and LISA)进行比较。最后,数据是利用集群分析,将LISA分析中确定的空间组组合纳入不同的数据来源。结果显示,这三项活动的数据部分是空间冗余的,部分是互补的,并允许多功能旅游空间的特征(有几项活动)和专门从事一种或多种活动的空间(例如观光和消费)。案例研究分析的案例研究(Madridd)显示,从一个游客的案例研究显示,从一个游客中心到一个使用的主要游客的外向外的游客在城市分析方式,必须显示一个特别来源。