We present a reinforcement learning (RL) approach for robust optimisation of risk-aware performance criteria. To allow agents to express a wide variety of risk-reward profiles, we assess the value of a policy using rank dependent expected utility (RDEU). RDEU allows the agent to seek gains, while simultaneously protecting themselves against downside events. To robustify optimal policies against model uncertainty, we assess a policy not by its distribution, but rather, by the worst possible distribution that lies within a Wasserstein ball around it. Thus, our problem formulation may be viewed as an actor choosing a policy (the outer problem), and the adversary then acting to worsen the performance of that strategy (the inner problem). We develop explicit policy gradient formulae for the inner and outer problems, and show its efficacy on three prototypical financial problems: robust portfolio allocation, optimising a benchmark, and statistical arbitrage


翻译:我们提出了一种强化学习(RL)方法,以大力优化风险意识业绩标准。为了让代理商能够表达各种各样的风险回报情况,我们评估了使用依赖性预期公用事业(RDEU)的等级标准(RDEU)的政策的价值。RDEU允许代理商寻求收益,同时保护自己免受不利事件的影响。为了强化针对模式不确定性的最佳政策,我们评估了一种政策,而不是根据其分布,而是以其周围瓦塞斯坦球内最差的分布。因此,我们的问题拟订可被视为选择政策(外部问题)的行为者,而对手则会采取行动使该战略的绩效恶化(内部问题)。我们为内部和外部问题制定了明确的政策梯度公式,并展示其在三种典型金融问题上的效力:稳健的投资组合分配、优化基准和统计套利。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2020年6月16日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
6+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2020年6月16日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
5+阅读 · 2018年4月22日
Top
微信扫码咨询专知VIP会员