项目名称: 基于Ag纳米结构阵列对N2H4的痕量检测及其SERS增强机制研究

项目编号: No.51701103

项目类型: 青年科学基金项目

立项/批准年度: 2018

项目学科: 一般工业技术

项目作者: 谢拯

作者单位: 清华大学

项目金额: 10万元

中文摘要: 肼是一种常见液体推进剂,在推进剂的各项作业中,由于泄漏等原因,会对环境造成不同程度的污染。由于肼具有较强毒性,痕量的肼会对人体造成伤害。本项目以水体中肼的快速、痕量、便携式检测为需求牵引,以表面增强拉曼效应(Surface Enhanced Raman Scattering, SERS)的拉曼检测为实现途径,针对其关键的材料问题,拟开展:①通过探针分子对肼分子进行修饰,以获得高SERS响应;②结合电磁理论设计、以PS等微球阵列作为模板,由电子束沉积的倾斜生长技术构筑具有高SERS活性的Ag纳米结构阵列;③通过有限元模拟计算和近场扫描光学显微成像,揭示局域电磁场增强、SERS活性以及纳米阵列结构之间的关系;④最后选取高SERS活性基底,建立水体中肼的快速、痕量、便携式的检测方法,为其在环境污染物的快速检测和预警等领域的应用提供奠定基础。

中文关键词: Ag纳米结构阵列;肼分子;痕量检测;表面增强拉曼散射;局域电磁场增强

英文摘要: Hydrazine is a common liquid propellant, which can cause different degree of pollution to the environment due to the reason of leakage during the operation. Because hydrazine has strong toxicity, trace amounts of hydrazine will cause harm to human body, therefore, detection of trace hydrazine is of great significance. Taking the instant, trace amount and portable detection of the hydrazine in water for target-towing, and taking the Surface Enhanced Raman Scattering (SERS) effect-based Raman detection for approach, in this project, aiming at the key material-issues, we put forward, (i) modify the hydrazine by probe molecule in order to get high SERS activity; (ii) fabricate Ag nanostructured arrays through glancing angle deposition by electron beam evaporation, which designed based on electromagnetic theory and using polystyrene as template; (iii) Through the finite element numerical simulation and near-field scanning optical microscopy imaging, study in deep and systematically, on local electromagnetic field enhancement effect, SERS activity and their dependences on the structural parameters; (iv) taking the Ag nanostructured arrays with the highest activity as the SERS substrate, establish a method for instant, trace amount and portable detection of the hydrazine in water, and laying the foundation for detection and warning of environment pollutants.

英文关键词: Ag nanostructured arrays;Hydrazine;Trace detection;Surface Enhanced Raman Scattering;Local Field Enhancement

成为VIP会员查看完整内容
0

相关内容

数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
68+阅读 · 2021年1月16日
专知会员服务
67+阅读 · 2020年11月30日
NTD的深度研究,为厘清新冠病毒机理提供新方向!
微软研究院AI头条
0+阅读 · 2021年11月23日
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
已删除
将门创投
12+阅读 · 2018年6月25日
微表情检测和识别的研究进展与趋势
中国计算机学会
15+阅读 · 2018年3月23日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
11+阅读 · 2019年4月15日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
小贴士
相关VIP内容
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
68+阅读 · 2021年1月16日
专知会员服务
67+阅读 · 2020年11月30日
相关资讯
NTD的深度研究,为厘清新冠病毒机理提供新方向!
微软研究院AI头条
0+阅读 · 2021年11月23日
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
已删除
将门创投
12+阅读 · 2018年6月25日
微表情检测和识别的研究进展与趋势
中国计算机学会
15+阅读 · 2018年3月23日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员