Given a set $\mathcal{F}$ of graphs, we call a copy of a graph in $\mathcal{F}$ an $\mathcal{F}$-graph. The $\mathcal{F}$-isolation number of a graph $G$, denoted by $\iota(G,\mathcal{F})$, is the size of a smallest subset $D$ of the vertex set $V(G)$ such that the closed neighbourhood of $D$ intersects the vertex sets of the $\mathcal{F}$-graphs contained by $G$ (equivalently, $G - N[D]$ contains no $\mathcal{F}$-graph). Thus, $\iota(G,\{K_1\})$ is the domination number of $G$. The second author showed that if $\mathcal{F}$ is the set of cycles and $G$ is a connected $n$-vertex graph that is not a triangle, then $\iota(G,\mathcal{F}) \leq \left \lfloor \frac{n}{4} \right \rfloor$. This bound is attainable for every $n$ and solved a problem of Caro and Hansberg. A question that arises immediately is how smaller an upper bound can be if $\mathcal{F} = \{C_k\}$ for some $k \geq 3$, where $C_k$ is a cycle of length $k$. The problem is to determine the smallest real number $c_k$ (if it exists) such that for some finite set $\mathcal{E}_k$ of graphs, $\iota(G, \{C_k\}) \leq c_k |V(G)|$ for every connected graph $G$ that is not an $\mathcal{E}_k$-graph. The above-mentioned result yields $c_3 = \frac{1}{4}$ and $\mathcal{E}_3 = \{C_3\}$. The second author also showed that if $k \geq 5$ and $c_k$ exists, then $c_k \geq \frac{2}{2k + 1}$. We prove that $c_4 = \frac{1}{5}$ and determine $\mathcal{E}_4$, which consists of three $4$-vertex graphs and six $9$-vertex graphs. The $9$-vertex graphs in $\mathcal{E}_4$ were fully determined by means of a computer program. A method that has the potential of yielding similar results is introduced.
翻译:暂无翻译