Mean-field molecular dynamics based on path integrals is used to approximate canonical quantum observables for particle systems consisting of nuclei and electrons. A computational bottleneck is the sampling from the Gibbs density of the electron operator, which due to the fermion sign problem has a computational complexity that scales exponentially with the number of electrons. In this work we construct an algorithm that approximates the mean-field Hamiltonian by path integrals for fermions. The algorithm is based on the determinant of a matrix with components based on Brownian bridges connecting permuted electron coordinates. The computational work for $n$ electrons is $\mathcal O(n^3)$, which reduces the computational complexity associated with the fermion sign problem. We analyze a bias resulting from this approximation and provide a computational error indicator. It remains to rigorously explain the surprisingly high accuracy.
翻译:暂无翻译