Visual Analytics (VA) tools and techniques have shown to be instrumental in supporting users to build better classification models, interpret model decisions and audit results. In a different direction, VA has recently been applied to transform classification models into descriptive mechanisms instead of predictive. The idea is to use such models as surrogates for data patterns, visualizing the model to understand the phenomenon represented by the data. Although very useful and inspiring, the few proposed approaches have opted to use low complex classification models to promote straightforward interpretation, presenting limitations to capture intricate data patterns. In this paper, we present VAX (multiVariate dAta eXplanation), a new VA method to support the identification and visual interpretation of patterns in multivariate data sets. Unlike the existing similar approaches, VAX uses the concept of Jumping Emerging Patterns to identify and aggregate several diversified patterns, producing explanations through logic combinations of data variables. The potential of VAX to interpret complex multivariate datasets is demonstrated through study-cases using two real-world data sets covering different scenarios.
翻译:视觉分析(VA)工具和技术已证明有助于支持用户建立更好的分类模型,解释模型决定和审计结果。在一个不同的方向,VA最近被用于将分类模型转换成描述性机制,而不是预测性机制。想法是使用数据模式代用模型等模型,将模型视觉化,以了解数据所代表的现象。虽然这些方法非常有用和启发人心,但很少建议采用低复杂分类模型来促进直截了当的解释,对捕捉复杂数据模式提出了局限性。在本文中,我们介绍了VAX(多维里亚特 dAta eXplanation),这是一种支持多变量数据集模式的识别和直观解释的新的VAA方法。与现有的类似方法不同,VAX使用“跳动新模式”的概念来识别和汇总多种多样化模式,通过数据变量的逻辑组合作出解释。VAX解释复杂多变量数据集的潜力通过使用两个涵盖不同情景的实时数据集的研究案例得到证明。