A collection of $K$ random variables are called $(K,n)$-MDS if any $n$ of the $K$ variables are independent and determine all remaining variables. In the MDS variable generation problem, $K$ users wish to generate variables that are $(K,n)$-MDS using a randomness variable owned by each user. We show that to generate $1$ bit of $(K,n)$-MDS variables for each $n \in \{1,2,\cdots, K\}$, the minimum size of the randomness variable at each user is $1 + 1/2 + \cdots + 1/K$ bits. An intimately related problem is secure summation with user selection, where a server may select an arbitrary subset of $K$ users and securely compute the sum of the inputs of the selected users. We show that to compute $1$ bit of an arbitrarily chosen sum securely, the minimum size of the key held by each user is $1 + 1/2 + \cdots + 1/(K-1)$ bits, whose achievability uses the generation of $(K,n)$-MDS variables for $n \in \{1,2,\cdots,K-1\}$.
翻译:随机变量为$( K, n) 集合 $ 随机变量 $ 1, 2,\ cdots, K @ $, 每个用户随机变量最小大小为 1 + 1/2 +\ cdots + 1/ K$ 位数。 在 MDS 变量生成问题中, $ 用户希望生成变量为$( K, n) $- MDS 。 我们显示, 每个用户的随机变量最小大小为 1 + 1 /2 + cdots + 1/ K$ bits 。 一个密切相关的问题是, 用户选择时, 一个服务器可以任意选择 $( K) 用户的子集, 安全地计算选定用户投入的总额 。 我们显示, 要对任意选择的金额计算一 美元, 每个用户持有的钥匙最小大小为 1 + 1/2 + cdots + 1/ ( K-1) $ 1, K\ k\ k\ k 位数, 这些服务器可以使用 $ 1, 和 $ 1, Q = Q Q 的 Q 变数。