The algorithms used for optimal management of ambulances require accurate description and prediction of the spatio-temporal evolution of emergency interventions. In the last years, several authors have proposed sophisticated statistical approaches to forecast the ambulance dispatches, typically modelling the events as a point pattern occurring on a planar region. Nevertheless, ambulance interventions can be more appropriately modelled as a realisation of a point process occurring along a network of lines, such as a road network. The constrained spatial domain raises specific challenges and unique methodological problems that cannot be ignored when developing a proper statistical model. Hence, this paper proposes a spatiotemporal model to analyse the ambulance interventions that occurred in the road network of Milan (Italy) from 2015 to 2017. We adopt a non-separable first-order intensity function with spatial and temporal terms. The temporal component is estimated semi-parametrically using a Poisson regression model, while the spatial dimension is estimated nonparametrically using a network kernel function. A set of weights is included in the spatial term to capture space-time interactions, inducing non-separability in the intensity function. A series of maps and graphical tests show that our approach successfully models the ambulance interventions and captures the space-time patterns.
翻译:用于最佳管理救护车的算法要求准确描述和预测应急干预措施的时空演进。在过去几年中,若干作者提出了复杂的统计方法,以预测救护车的派遣,典型地模拟在平板区域发生的事件,但救护车的干预可以更恰当地模拟,以实现沿线路网络(如公路网络)出现的点进程。有限的空间领域提出了在开发适当的统计模型时无法忽视的具体挑战和独特的方法问题。因此,本文件提议了一个随机时空模型,以分析2015年至2017年在米兰(意大利)公路网(公路网)发生的救护车干预。我们采用了非隔离一级一级强度功能,以空间和时间术语为条件。时间部分是使用Poisson回归模型估算的半参数,而空间层面则使用网络内核功能进行非对称性估计。一组加权包括在空间术语中,以捕捉空间-时间相互作用,导致强度功能的不分离。一系列地图和图表测试显示,我们的方法成功地模拟了救护车的干预和空间-时空模型。