Multimodal Language Analysis is a demanding area of research, since it is associated with two requirements: combining different modalities and capturing temporal information. During the last years, several works have been proposed in the area, mostly centered around supervised learning in downstream tasks. In this paper we propose extracting unsupervised Multimodal Language representations that are universal and can be applied to different tasks. Towards this end, we map the word-level aligned multimodal sequences to 2-D matrices and then use Convolutional Autoencoders to learn embeddings by combining multiple datasets. Extensive experimentation on Sentiment Analysis (MOSEI) and Emotion Recognition (IEMOCAP) indicate that the learned representations can achieve near-state-of-the-art performance with just the use of a Logistic Regression algorithm for downstream classification. It is also shown that our method is extremely lightweight and can be easily generalized to other tasks and unseen data with small performance drop and almost the same number of parameters. The proposed multimodal representation models are open-sourced and will help grow the applicability of Multimodal Language.


翻译:多模式语言分析是一个要求很高的研究领域,因为它与两个要求相关:结合不同模式和捕捉时间信息。在过去几年里,提出了在该地区的一些工作,主要围绕在下游任务中监督学习。在本文件中,我们建议提取不受监督的多模式语言表述,这些表述是通用的,可以应用于不同的任务。为此,我们将字级统一多式联运序列绘制成二维矩阵,然后使用进化自动编码器通过合并多个数据集学习嵌入。关于感化分析(MOSEI)和情感识别(IEMOCAP)的广泛实验表明,所学的表述仅使用下游分类的物流回归算法即可达到近于最新的业绩。还表明,我们的方法非常轻,很容易被其他任务和隐蔽数据所覆盖,其性能下降小,参数几乎相同。拟议的多式联运表述模型是公开的,将有助于扩大多模式语言的应用。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
10+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Arxiv
3+阅读 · 2022年4月19日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
10+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员