Adversarial attacks expose important vulnerabilities of deep learning models, yet little attention has been paid to settings where data arrives as a stream. In this paper, we formalize the online adversarial attack problem, emphasizing two key elements found in real-world use-cases: attackers must operate under partial knowledge of the target model, and the decisions made by the attacker are irrevocable since they operate on a transient data stream. We first rigorously analyze a deterministic variant of the online threat model by drawing parallels to the well-studied $k$-secretary problem in theoretical computer science and propose Virtual+, a simple yet practical online algorithm. Our main theoretical result show Virtual+ yields provably the best competitive ratio over all single-threshold algorithms for $k<5$ -- extending previous analysis of the $k$-secretary problem. We also introduce the \textit{stochastic $k$-secretary} -- effectively reducing online blackbox transfer attacks to a $k$-secretary problem under noise -- and prove theoretical bounds on the performance of \textit{any} online algorithms adapted to this setting. Finally, we complement our theoretical results by conducting experiments on both MNIST and CIFAR-10 with both vanilla and robust classifiers, revealing not only the necessity of online algorithms in achieving near-optimal performance but also the rich interplay of a given attack strategy towards online attack selection, enabling simple strategies like FGSM to outperform classically strong whitebox adversaries.
翻译:Adversarial攻击暴露了深层次学习模型的重要弱点,然而却很少注意数据流到达的设置。 在本文中,我们正式确定在线对抗性攻击问题,强调现实世界使用案例中发现的两个关键要素:攻击者必须在目标模型的部分知识下行动,攻击者的决定是不可撤销的,因为攻击者是在瞬时数据流上行动。我们首先严格分析在线威胁模型的确定变式,在理论计算机科学中与经过良好研究的美元机密问题平行,并提议虚拟+,一个简单而实用的在线算法。我们的主要理论结果显示,虚拟+在所有单值使用案例中,产生最有竞争力的比例:攻击者必须在目标模型的部分知识下行动,攻击者必须在目标模型中行动,攻击者必须先对美元保守问题进行分析。我们还引入了“textit{tochchactict $k$k-secrestery} 在线威胁模式的确定变异变量,在噪音下将在线黑箱转移攻击事件有效地减少为美元-保密问题 -- 并证明理论约束了“虚拟+”, 虚拟网络上攻击性攻击性攻击的性分析工具{any/abrecialalalalalal comstreval dalal dalmax