We propose the ChaCha (Champion-Challengers) algorithm for making an online choice of hyperparameters in online learning settings. ChaCha handles the process of determining a champion and scheduling a set of `live' challengers over time based on sample complexity bounds. It is guaranteed to have sublinear regret after the optimal configuration is added into consideration by an application-dependent oracle based on the champions. Empirically, we show that ChaCha provides good performance across a wide array of datasets when optimizing over featurization and hyperparameter decisions.


翻译:我们提出Chacha(Champion-Challengers)算法,用于在线选择在线学习环境中的超参数。Chacha根据样本复杂度,处理确定冠军的过程,并安排一组“实时”挑战者,在一段时间内根据样本复杂度进行定时。在以冠军为根据的以应用程序为依存的甲骨文来考虑最佳配置后,可以保证出现亚线性遗憾。我们很生动地表明,Chacha在优化超生化和超常参数决定时,在一系列广泛的数据集中提供良好的性能。

0
下载
关闭预览

相关内容

在贝叶斯统计中,超参数是先验分布的参数; 该术语用于将它们与所分析的基础系统的模型参数区分开。
【XAUTOML】可解释自动机器学习,27页ppt
专知会员服务
63+阅读 · 2021年4月23日
专知会员服务
21+阅读 · 2020年10月4日
专知会员服务
88+阅读 · 2020年8月2日
元学习(meta learning) 最新进展综述论文
专知会员服务
279+阅读 · 2020年5月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
自动机器学习(AutoML)最新综述
PaperWeekly
34+阅读 · 2018年11月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
0+阅读 · 2021年8月10日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
14+阅读 · 2020年12月17日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
自动机器学习(AutoML)最新综述
PaperWeekly
34+阅读 · 2018年11月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员