A colouring of a graph is "nonrepetitive" if for every path of even order, the sequence of colours on the first half of the path is different from the sequence of colours on the second half. We show that planar graphs have nonrepetitive colourings with a bounded number of colours, thus proving a conjecture of Alon, Grytczuk, Haluszczak and Riordan (2002). We also generalise this result for graphs of bounded Euler genus, graphs excluding a fixed minor, and graphs excluding a fixed topological minor.
翻译:图形的颜色是“ 不可重复性 ”, 如果对于每一个偶数路径, 路径前半段的颜色顺序与后半段的颜色顺序不同。 我们显示, 平面图有非重复性颜色, 包含一定数量的颜色, 从而证明了 Alon、 Grytczuk、 Haluszczak 和 Riordan 的推测 (2002年) 。 我们还将这一结果概括为被捆绑的 Euler genus 的图形、 不包括固定次要的图表 以及不包括固定表层次要的图表 。