Photos are becoming spontaneous, objective, and universal sources of information. This paper develops evolving situation recognition using photo streams coming from disparate sources combined with the advances of deep learning. Using visual concepts in photos together with space and time information, we formulate the situation detection into a semi-supervised learning framework and propose new graph-based models to solve the problem. To extend the method for unknown situations, we introduce a soft label method which enables the traditional semi-supervised learning framework to accurately predict predefined labels as well as effectively form new clusters. To overcome the noisy data which degrades graph quality, leading to poor recognition results, we take advantage of two kinds of noise-robust norms which can eliminate the adverse effects of outliers in visual concepts and improve the accuracy of situation recognition. Finally, we demonstrate the idea and the effectiveness of the proposed model on Yahoo Flickr Creative Commons 100 Million.
翻译:照片正在成为自发、 客观和普遍的信息来源。 本文利用来自不同来源的相片流以及深层学习的进步来发展不断变化的情况识别。 使用照片中的视觉概念以及空间和时间信息,我们将情况探测纳入半监督的学习框架,并提出新的图表模型来解决问题。 为了扩大未知情况的方法, 我们引入软标签方法, 使传统的半监督学习框架能够准确预测预先定义的标签, 并有效地形成新的群集。 为了克服降低图表质量的繁忙数据, 导致认识结果差, 我们利用两种噪音暴动规范, 消除视觉概念中外部人物的不利影响, 提高情况识别的准确性。 最后, 我们展示了Yahoo Flickr Creative Commonts 100万 上的拟议模型的想法和有效性 。