In this work we revisit the Boolean Hidden Matching communication problem, which was the first communication problem in the one-way model to demonstrate an exponential classical-quantum communication separation. In this problem, Alice's bits are matched into pairs according to a partition that Bob holds. These pairs are compressed using a Parity function and it is promised that the final bit-string is equal either to another bit-string Bob holds, or its complement. The problem is to decide which case is the correct one. Here we generalize the Boolean Hidden Matching problem by replacing the parity function with an arbitrary Boolean function $f$. Efficient communication protocols are presented depending on the sign-degree of $f$. If its sign-degree is less than or equal to 1, we show an efficient classical protocol. If its sign-degree is less than or equal to $2$, we show an efficient quantum protocol. We then completely characterize the classical hardness of all symmetric functions $f$ of sign-degree greater than or equal to $2$, except for one family of specific cases. We also prove, via Fourier analysis, a classical lower bound for any function $f$ whose pure high degree is greater than or equal to $2$. Similarly, we prove, also via Fourier analysis, a quantum lower bound for any function $f$ whose pure high degree is greater than or equal to $3$. These results give a large family of new exponential classical-quantum communication separations.
翻译:在这项工作中,我们重新审视了布林隐藏的匹配通信问题,这是单向模式中第一个显示指数性古典-夸脱通信分离的沟通问题。在这个问题上,爱丽丝的位子按照Bob持有的分割区对齐。这些对子使用对称功能压缩,并承诺最后的位字符串等于另一个位字符串 Bob持有,或补充它。问题在于决定哪个案件是正确的。我们在这里将布林隐藏匹配问题概括为单向模式中的第一个沟通问题,以任意的布林函数取代对等功能,即$fff美元。在这个问题上,爱丽丝的位点根据Bob持有的分割区对齐。如果其标志度小于或等于1美元,我们展示了一个高效的经典协议。如果其标志度小于或等于2美元,我们展示了一个高效的量子协议。我们然后将所有对典型的重函数的难度完全定性为超标度,比或等于2美元,除了一个具体案例的家族。我们通过4级分析,也证明一个比4美元高的直径直径的直径直径直系函数,比2美元高。