Explanations for \emph{black-box} models help us understand model decisions as well as provide information on model biases and inconsistencies. Most of the current explainability techniques provide a single level of explanation, often in terms of feature importance scores or feature attention maps in input space. Our focus is on explaining deep discriminative models at \emph{multiple levels of abstraction}, from fine-grained to fully abstract explanations. We achieve this by using the natural properties of \emph{hyperbolic geometry} to more efficiently model a hierarchy of symbolic features and generate \emph{hierarchical symbolic rules} as part of our explanations. Specifically, for any given deep discriminative model, we distill the underpinning knowledge by discretisation of the continuous latent space using vector quantisation to form symbols, followed by a \emph{hyperbolic reasoning block} to induce an \emph{abstraction tree}. We traverse the tree to extract explanations in terms of symbolic rules and its corresponding visual semantics. We demonstrate the effectiveness of our method on the MNIST and AFHQ high-resolution animal faces dataset. Our framework is available at \url{https://github.com/koriavinash1/SymbolicInterpretability}.
翻译:对 emph{black-box} 模型的解释有助于我们理解模型决定, 并提供模型偏差和不一致的信息。 目前的大多数解释技术提供单一层次的解释, 通常是在输入空间的特性重要性、 得分或注意地图上。 我们的重点是解释在\ emph{ 多重抽象水平上的深层次歧视模型, 从细微的刻度到完全抽象的解释。 我们通过使用 emph{hyperbolic 的自然特性, 来更有效地模拟符号特征的等级, 并生成 emph{ hierararchical 符号规则 。 作为我们解释的一部分。 具体地说, 对于任何给定的深刻歧视模式, 我们通过将连续的隐性空间离散化成符号, 并随后用 \ emph{ hyperbolical 推理块来引导 \ emph{abstractaction treets} 。 我们绕树去提取符号规则及其相应的视觉语义解释, 我们展示了我们的方法在 MINIS 和 AFrbrus preabral 上的有效性。