Annealing processors, which solve a quadratic unconstrained binary optimization (QUBO), are a potential breakthrough in improving the accuracy of score-based Bayesian network structure learning. However, currently, the bit capacity of an annealing processor is very limited. To utilize the power of annealing processors, it is necessary to encode score-based learning problems into QUBO within the upper bound of bits. In this paper, we propose a novel approach with the decomposition of candidate parent sets. Experimental results on benchmark networks with $37$ to $223$ variables show that our approach requires lesser bits than the bit capacity of the fourth-generation Fujitsu Digital Annealer, a fully coupled annealing processor developed with semiconductor technology. Moreover, we demonstrate that the Digital Annealer with our conversion method outperforms existing algorithms on some benchmark networks. It is expected that our approach promotes the utility of annealing processors in learning the Bayesian network.


翻译:Annaling 处理器(QUBO ) 解决了二次不受限制的二进制优化(QUBO ), 是提高Bayesian网络结构学习精确度的一个潜在突破。 但是,目前, annealing 处理器的比特能力非常有限。 要利用Annealing 处理器的力量, 就必须将基于分数的学习问题编码到 QUBO 中, 在位数的上界内。 在本文中, 我们提出一种新办法, 将候选母体分解。 基准网络的实验结果为37美元到223美元的变量显示, 我们的方法需要比第四代Fujartsu 数字Annaaler的比特能力少一些位数, 这是一种与半导体技术完全结合的Annealing 处理器。 此外, 我们证明, 数字Annaner 与我们的转换方法比一些基准网络的现有算法要优于现有的算法。 我们预计我们的方法会促进Nenalinging 处理器在学习Bayesian 网络中的效用。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员