$\texttt{gCastle}$ is an end-to-end Python toolbox for causal structure learning. It provides functionalities of generating data from either simulator or real-world dataset, learning causal structure from the data, and evaluating the learned graph, together with useful practices such as prior knowledge insertion, preliminary neighborhood selection, and post-processing to remove false discoveries. Compared with related packages, $\texttt{gCastle}$ includes many recently developed gradient-based causal discovery methods with optional GPU acceleration. $\texttt{gCastle}$ brings convenience to researchers who may directly experiment with the code as well as practitioners with graphical user interference. Three real-world datasets in telecommunications are also provided in the current version. $\texttt{gCastle}$ is available under Apache License 2.0 at \url{https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle}.
翻译:$\ textt{ gCastle} $\ textt{ gCastle} 是一个用于因果结构学习的端到端 Python 工具箱, 它提供从模拟器或真实世界数据集生成数据的功能, 从数据中学习因果结构, 并评估所学的图表, 以及诸如事先知识插入、 初步邻里选择 和后处理等有用的做法, 以消除虚假发现 。 与相关的软件包相比, $\ textt{ gCastle} 包括许多最近开发的基于梯度的因果发现方法, 且可选择 GPU 加速 。 $\ textt{ gCastle} 给可能直接试验该代码的研究人员以及图形用户干扰的从业者带来方便。 目前版本中还提供三套真实世界的电信数据集 。 $\ textt{ gastle} 在https://github. https://guthhuwei-noah/ trustworenceAI/ kree/keter/ gcast/ gcastle} 。