Data foraging is a process commonly arising in interactive data analysis where a user sifts through a large amount of potentially irrelevant information seeking data relevant to their task. In machine learning, the related task of active search considers the automated discovery of rare, valuable items from large databases and has delivered massive speedups in discovery in areas including drug and materials discovery. However, there have yet to be any advances in integrating active search with an interactive interface to make use of an analyst's domain knowledge in the search process. We introduce and evaluate a technique we call Active Visual Analytics (ActiveVA), an augmentation of interactive visualization with active search to accelerate data foraging. In this approach, underlying machine learning models automatically learn a user's latent interest by observing their interactions; these models then inform an active search algorithm that leads the user toward the points judged most promising for exploration. Using the epidemic dataset from VAST Challenge 2011, we design and conduct a crowd-sourced user study to evaluate several aspects of this technique. We present evidence that a human--computer partnership based on ActiveVA results in higher throughput and more meaningful interactions during interactive visual exploration and discovery without any undue effect on the user experience.
翻译:在机器学习中,主动搜索的相关任务考虑到从大型数据库自动发现稀有、有价值的物品,并在包括毒品和材料发现在内的领域提供大规模快速发现;然而,在将积极搜索与互动界面相结合以在搜索过程中利用分析员的域知识方面,尚未取得任何进展。我们引入并评估了一种技术,即我们称之为“主动视觉分析(ApactiveVA)”,一种通过积极搜索增强互动可视化和积极搜索以加速数据定位。在这种方法中,基础机器学习模型通过观察互动自动了解用户的潜在兴趣;这些模型随后为一种积极的搜索算法提供信息,引导用户走向被认为最有探索希望的点。我们利用2011年VAST挑战(2011年)的流行病数据集设计和开展一个众源用户研究,以评价这一技术的若干方面。我们提供的证据是,基于积极视觉分析(Apentive VA)的人类-计算机伙伴关系在互动和发现过程中,在不对用户经验产生任何不当影响的情况下,在互动和发现过程中,通过更高水平和更有意义的互动中自动了解用户的潜在兴趣。