To lower cost and increase the utilization of Cloud Field-Programmable Gate Arrays (FPGAs), researchers have recently been exploring the concept of multi-tenant FPGAs, where multiple independent users simultaneously share the same remote FPGA. Despite its benefits, multi-tenancy opens up the possibility of malicious users co-locating on the same FPGA as a victim user, and extracting sensitive information. This issue becomes especially serious when the user is running a machine learning algorithm that is processing sensitive or private information. To demonstrate the dangers, this paper presents a remote, power-based side-channel attack on a deep neural network accelerator running in a variety of Xilinx FPGAs and also on Cloud FPGAs using Amazon Web Services (AWS) F1 instances. This work in particular shows how to remotely obtain voltage estimates as a deep neural network inference circuit executes, and how the information can be used to recover the inputs to the neural network. The attack is demonstrated with a binarized convolutional neural network used to recognize handwriting images from the MNIST handwritten digit database. With the use of precise time-to-digital converters for remote voltage estimation, the MNIST inputs can be successfully recovered with a maximum normalized cross-correlation of 79% between the input image and the recovered image on local FPGA boards and 72% on AWS F1 instances. The attack requires no physical access nor modifications to the FPGA hardware.
翻译:为了降低成本和增加使用云地可编程门阵列(FPGAs)的成本,研究人员最近一直在探索多租赁的FPGA(多独立用户同时共享同一远程FPGA)的概念。尽管好处很多,但多租赁为恶意用户打开了将恶意用户作为受害者用户同FPGA(FPGA)一起放置的可能性,并提取敏感信息。当用户正在运行一种处理敏感信息或私人信息的机器学习算法时,这一问题就变得特别严重。为显示危险,本文展示了对在一系列Xilinx FPGA(多独立用户同时共享相同的远程FPGA)和在Cloud FPGA(使用亚马逊网络服务(AWS) F1 实例)中运行的深层线心电图网络的远程、以电路路路路运行,以及信息如何用于恢复对神经网络的投入。通过一个二进电图网络演示了这次攻击,用于识别SLILIFGA(S1) 的深层神经网(SBA) 平面图像的深层校正缩校平平平平平平平平平平平平面图,可以使用一个恢复的计算机数据库。