Low-light imaging on mobile devices is typically challenging due to insufficient incident light coming through the relatively small aperture, resulting in a low signal-to-noise ratio. Most of the previous works on low-light image processing focus either only on a single task such as illumination adjustment, color enhancement, or noise removal; or on a joint illumination adjustment and denoising task that heavily relies on short-long exposure image pairs collected from specific camera models, and thus these approaches are less practical and generalizable in real-world settings where camera-specific joint enhancement and restoration is required. To tackle this problem, in this paper, we propose a low-light image processing framework that performs joint illumination adjustment, color enhancement, and denoising. Considering the difficulty in model-specific data collection and the ultra-high definition of the captured images, we design two branches: a coefficient estimation branch as well as a joint enhancement and denoising branch. The coefficient estimation branch works in a low-resolution space and predicts the coefficients for enhancement via bilateral learning, whereas the joint enhancement and denoising branch works in a full-resolution space and progressively performs joint enhancement and denoising. In contrast to existing methods, our framework does not need to recollect massive data when being adapted to another camera model, which significantly reduces the efforts required to fine-tune our approach for practical usage. Through extensive experiments, we demonstrate its great potential in real-world low-light imaging applications when compared with current state-of-the-art methods.


翻译:移动设备上的低光成像通常具有挑战性,因为通过相对小的孔径产生的事件光光不足,导致信号到噪音的比率较低。以前关于低光图像处理的工程大多只侧重于一个单项任务,如照明调整、彩色增强或噪音去除;或者联合照明调整和去除工作,这在很大程度上依赖于从特定相机模型中收集的短时间暴露图像配对,因此这些方法在现实世界环境中不太实用,也不太普遍,因为需要通过照相机联合增强和恢复,因此在现实环境中,这些方法不太可行,也不太可行。为了解决这个问题,我们在本文件中提议建立一个低光图像处理框架,进行联合照明调整、色增强和分解。考虑到在收集特定模型的数据收集方面存在的困难,以及所拍摄图像的超高定义,我们设计了两个分支:一个系数估计处,以及一个联合增强和分处。系数估计部门在低分辨率空间中工作,预测通过双边学习提高的实际系数,而联合加强和分处则在全分辨率空间中工作,并逐步进行联合改进,同时逐步进行联合改进,并逐步进行联合加强和降低升级,因为在大幅改进和缩小的实验室工作,因此,我们需要采用另一种方法,从而大幅改进和缩小地改进现有数据,从而降低现有数据的利用。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
【CVPR2021】GAN人脸预训练模型
专知会员服务
23+阅读 · 2021年4月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月13日
VIP会员
Top
微信扫码咨询专知VIP会员