Image Signal Processor (ISP) is a crucial component in digital cameras that transforms sensor signals into images for us to perceive and understand. Existing ISP designs always adopt a fixed architecture, e.g., several sequential modules connected in a rigid order. Such a fixed ISP architecture may be suboptimal for real-world applications, where camera sensors, scenes and tasks are diverse. In this study, we propose a novel Reconfigurable ISP (ReconfigISP) whose architecture and parameters can be automatically tailored to specific data and tasks. In particular, we implement several ISP modules, and enable backpropagation for each module by training a differentiable proxy, hence allowing us to leverage the popular differentiable neural architecture search and effectively search for the optimal ISP architecture. A proxy tuning mechanism is adopted to maintain the accuracy of proxy networks in all cases. Extensive experiments conducted on image restoration and object detection, with different sensors, light conditions and efficiency constraints, validate the effectiveness of ReconfigISP. Only hundreds of parameters need tuning for every task.
翻译:图像信号处理器(ISP)是数字相机中的一个关键组成部分,它能将传感器信号转化为图像,供我们感知和理解。现有的ISP设计总是采用固定结构,例如,几个相继模块,以硬性顺序连接。这种固定的ISP结构对于现实应用来说可能并不理想,因为相机传感器、场景和任务各不相同。在这个研究中,我们建议建立一个新型的可配置ISP(ReconfigIS),其结构和参数可以自动适应特定数据和任务。特别是,我们实施了若干ISP模块,并通过培训一个不同的代理来为每个模块提供后方调整,从而使我们能够利用流行的不同神经结构搜索和有效搜索最佳的ISP结构。采用了一种代理调整机制,以保持所有情况下代理网络的准确性。在图像恢复和对象探测方面进行了广泛的实验,同时使用不同的传感器、光质条件和效率限制,验证ReconfigISP的有效性。只有数百项参数需要调整。