We propose a new stochastic model for streamflow discharge timeseries as a jump-driven process, called a superposition of continuous-state branching processes with immigration (a supCBI process). It is a non-Markovian model having the capability of reproducing the subexponential autocorrelation found in the hydrological data. The Markovian embedding as a version of matrix analytic methods is applied to the supCBI process, successfully yielding analytical formulae of statistical moments and autocorrelation. The supCBI process is identified at study sites, where hourly streamflow discharge data are available. We also consider another Markovian embedding as a model reduction of the supCBI process to a continuous-time binary semi-Markov chain of high- and low-flow regimes. We show that waiting times can be modeled using a mixture of exponential distributions, suggesting that semi-Markov chains serve as effectively reduced models of the supCBI process.
翻译:我们提出了一个新的流流流排放时间序列随机模型,作为跳动驱动过程,称为持续状态分流过程与移民(SupCBI进程)的叠加。这是一个非马尔科维亚模型,能够复制水文数据中发现的亚特异性自动关系。Markovian嵌入作为矩阵分析方法的版本,适用于 supCBI 进程,成功地生成了统计时刻和自动调节的分析公式。 SupCBI 进程被确定为具有小时流流流数据的研究地点。我们还认为另一个Markovian 嵌入模式是将 SupCBI 进程作为高流量和低流量制度的连续二进制半马科夫半马可链的模型。我们表明,等待时间可以使用指数分布的混合模型进行模拟,建议半马尔科夫链作为SupCBI进程的有效减少模型。