In this report, our approach to tackling the task of ActivityNet 2018 Kinetics-600 challenge is described in detail. Though spatial-temporal modelling methods, which adopt either such end-to-end framework as I3D \cite{i3d} or two-stage frameworks (i.e., CNN+RNN), have been proposed in existing state-of-the-arts for this task, video modelling is far from being well solved. In this challenge, we propose spatial-temporal network (StNet) for better joint spatial-temporal modelling and comprehensively video understanding. Besides, given that multi-modal information is contained in video source, we manage to integrate both early-fusion and later-fusion strategy of multi-modal information via our proposed improved temporal Xception network (iTXN) for video understanding. Our StNet RGB single model achieves 78.99\% top-1 precision in the Kinetics-600 validation set and that of our improved temporal Xception network which integrates RGB, flow and audio modalities is up to 82.35\%. After model ensemble, we achieve top-1 precision as high as 85.0\% on the validation set and rank No.1 among all submissions.
翻译:本报告详细介绍了我们应对2018年活动网动因-600号挑战的方法。虽然在目前关于这项任务的最新条款中已经提出了处理2018年动因-600号活动网任务的方法。尽管空间-时际建模方法(即I3D\cite{i3d}或两阶段框架(即CNN+RNNNN),但目前为这项任务提出的现有阶段框架(即CNN+RNN)已经采纳了I3D\cite{i3d}或两个阶段的端对端框架(即CNN+RNNN),但视频建模远未完全解决。在这项挑战中,我们提出了空间-时际网络(StNet),以更好地联合空间-时空建模和全面视频理解。此外,鉴于多模式信息包含在视频源中,我们设法通过拟议改进的时际Xceptionion网络(iTXXN)将多式信息的早期集成和后集成战略集成,作为高校准文件,我们作为高校定的一级和高校准。