In this paper, we propose a model-driven method that reconstructs LoD-2 building models following a "decomposition-optimization-fitting" paradigm. The proposed method starts building detection results through a deep learning-based detector and vectorizes individual segments into polygons using a "three-step" polygon extraction method, followed by a novel grid-based decomposition method that decomposes the complex and irregularly shaped building polygons to tightly combined elementary building rectangles ready to fit elementary building models. We have optionally introduced OpenStreetMap (OSM) and Graph-Cut (GC) labeling to further refine the orientation of 2D building rectangle. The 3D modeling step takes building-specific parameters such as hip lines, as well as non-rigid and regularized transformations to optimize the flexibility for using a minimal set of elementary models. Finally, roof type of building models s refined and adjacent building models in one building segment are merged into the complex polygonal model. Our proposed method has addressed a few technical caveats over existing methods, resulting in practically high-quality results, based on our evaluation and comparative study on a diverse set of experimental datasets of cities with different urban patterns.


翻译:在本文中,我们提出一种模型驱动方法,根据“分解成形-最佳化”的范式重建LoD-2建筑模型。拟议方法开始通过深层次的学习探测器建立探测结果,并采用“三步”多边形提取方法将个别区块向多边形迁移,然后采用创新的基于网格的分解方法,分解复杂和不固定形状的建筑多边形,将复杂和不固定的建筑多边形分解成紧凑的初级建筑矩形,准备与基本建筑模型相适应。我们可选地引入OpenStreMap(OSM)和Greag-Cut(GC)标签,以进一步完善2D建筑矩形的定位。3D建模步骤采用具体建筑参数,如时长线,以及非固定和正规化的变形,以优化使用最低限度基本模型的灵活性。最后,一个建筑区块中经过精细和相相邻的建筑模型的顶型将并入复杂的多边形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形色色色色色色色色

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员