Infectious disease forecasting for ongoing epidemics has been traditionally performed, communicated, and evaluated as numerical targets -- 1, 2, 3, and 4 week ahead cases, deaths, and hospitalizations. While there is great value in predicting these numerical targets to assess the burden of the disease, we argue that there is also value in communicating the future trend (description of the shape) of the epidemic. For instance, if the cases will remain flat or a surge is expected. To ensure what is being communicated is useful we need to be able to evaluate how well the predicted shape matches with the ground truth shape. Instead of treating this as a classification problem (one out of $n$ shapes), we define a transformation of the numerical forecasts into a shapelet-space representation. In this representation, each dimension corresponds to the similarity of the shape with one of the shapes of interest (a shapelet). We prove that this representation satisfies the property that two shapes that one would consider similar are mapped close to each other, and vice versa. We demonstrate that our representation is able to reasonably capture the trends in COVID-19 cases and deaths time-series. With this representation, we define an evaluation measure and a measure of agreement among multiple models. We also define the shapelet-space ensemble of multiple models which is the mean of the shapelet-space representation of all the models. We show that this ensemble is able to accurately predict the shape of the future trend for COVID-19 cases and trends. We also show that the agreement between models can provide a good indicator of the reliability of the forecast.
翻译:对当前流行病的传染病预测历来是作为数字指标 -- -- 1、2、3和4周前病例、死亡和住院治疗 -- -- 进行、传播和评价的。虽然预测这些数字指标对于评估该疾病的负担有很大价值,但我们认为,传播该流行病的未来趋势(形状的描述)也有价值。例如,如果病例保持平坦或预计会出现剧增,那么,如果病例将保持平缓或预计会出现剧增,那么,为了确保所传达的信息是有用的。我们需要能够评估预测的形状与地面真相形状相匹配的程度。我们不是将这一问题作为分类问题处理(以美元为单位),而是将数字预测确定为形状-空间代表。虽然预测数字预测具有很大的价值。在这种表述中,每个方面都与形状的形状相似(形状的形状的形状的形状)有关。我们证明,这种表述能够合理地反映COVI-19案件的趋势和死亡时间序列。我们用这个模型来界定数字-19模型的形状的形状的形状的形状和形状的形状的形状的形状。我们为各种空间预测模型的形状的形状的形状提供了一种稳定的模型。我们为各种空间预测模型的形状的形状的形态的形态的模型。我们为各种空间的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的形态的