The prospect of using autonomous robots to enhance the capabilities of physicians and enable novel procedures has led to considerable efforts in developing medical robots and incorporating autonomous capabilities. Motion planning is a core component for any such system working in an environment that demands near perfect levels of safety, reliability, and precision. Despite the extensive and promising work that has gone into developing motion planners for medical robots, a standardized and clinically-meaningful way to compare existing algorithms and evaluate novel planners and robots is not well established. We present the Medical Motion Planning Dataset (Med-MPD), a publicly-available dataset of real clinical scenarios in various organs for the purpose of evaluating motion planners for minimally-invasive medical robots. Our goal is that this dataset serve as a first step towards creating a larger robust medical motion planning benchmark framework, advance research into medical motion planners, and lift some of the burden of generating medical evaluation data.
翻译:利用自主机器人提高医生能力和促成新程序的前景已导致在发展医疗机器人和纳入自主能力方面作出了相当大的努力; 运动规划是任何这种系统的核心组成部分,这种系统在需要接近完美程度的安全、可靠性和精确性的环境中运作; 尽管在为医疗机器人制定运动规划人员方面做了广泛而有希望的工作,但是,在比较现有算法和评价新规划者和机器人方面,还没有确立一种标准化和具有临床意义的方法,以比较现有的算法和评价新规划者和机器人; 我们提出了医疗动力规划数据集(Med-MPD),这是各种器官中公开提供的一套真实临床假设数据集,目的是评估最起码侵入性医疗机器人的运动规划人员。 我们的目标是,这一数据集是朝着建立更强有力的医疗动作规划基准框架、将研究推进到医疗动作规划人员之中、以及解除产生医疗评价数据负担迈出的第一步。