The question of energy concentration in approximate solution sequences $u^\epsilon$, as $\epsilon \to 0$, of the two-dimensional incompressible Euler equations with vortex-sheet initial data is revisited. Building on a novel identity for the structure function in terms of vorticity, the vorticity maximal function is proposed as a quantitative tool to detect concentration effects in approximate solution sequences. This tool is applied to numerical experiments based on the vortex-blob method, where vortex sheet initial data without distinguished sign are considered, as introduced in \emph{[R.~Krasny, J. Fluid Mech. \textbf{167}:65-93 (1986)]}. Numerical evidence suggests that no energy concentration appears in the limit of zero blob-regularization $\epsilon \to 0$, for the considered initial data.
翻译:重新审视具有涡流表初始数据的二维不可压缩尤勒方程式的能源浓度问题。根据园艺结构功能的新特性,提出了园艺最大功能,作为量化工具,用以检测近似溶解序列中的浓度效应。该工具用于基于涡流-浮流法的数值实验,该方法考虑没有明显标志的涡流表初始数据,如在\emph{[R~Krasny,J.FluidMech.\textbf{167}:65-93(1986)]}中介绍的。数字证据表明,对于考虑的初步数据,在零blob-正态 $\epsilon \ to 0 的限度内没有出现能源浓度。