When humans perform contact-rich manipulation tasks, customized tools are often necessary to simplify the task. For instance, we use various utensils for handling food, such as knives, forks and spoons. Similarly, robots may benefit from specialized tools that enable them to more easily complete a variety of tasks. We present an end-to-end framework to automatically learn tool morphology for contact-rich manipulation tasks by leveraging differentiable physics simulators. Previous work relied on manually constructed priors requiring detailed specification of a 3D object model, grasp pose and task description to facilitate the search or optimization process. Our approach only requires defining the objective with respect to task performance and enables learning a robust morphology through randomizing variations of the task. We make this optimization tractable by casting it as a continual learning problem. We demonstrate the effectiveness of our method for designing new tools in several scenarios, such as winding ropes, flipping a box and pushing peas onto a scoop in simulation. Additionally, experiments with real robots show that the tool shapes discovered by our method help them succeed in these scenarios.
翻译:当人类执行接触丰富的操作任务时, 通常需要定制工具来简化任务。 例如, 我们使用各种工具来处理食物, 比如刀、 叉和勺子。 同样, 机器人也可以从专门工具中受益, 使他们更容易完成各种任务。 我们提出了一个端对端框架, 以便通过利用不同的物理模拟器, 自动学习接触丰富的操作任务的工具形态。 先前的工作依赖于手工构建的前程, 需要详细规范 3D 对象模型、 抓取姿势和任务描述, 以方便搜索或优化进程。 我们的方法只要求确定任务性能的目标, 并且能够通过随机改变任务来学习一种强健的形态。 我们通过将这种优化作为持续学习问题来使其具有可动性。 我们展示了我们在若干情景中设计新工具的方法的有效性, 比如风绳、 翻转盒子和在模拟中将豆子推入勺子。 此外, 与真正的机器人进行的实验显示, 我们的方法发现的工具形状有助于他们在这些情景中取得成功 。</s>