We construct quantum public-key encryption from one-way functions. In our construction, public keys are quantum, but ciphertexts are classical. Quantum public-key encryption from one-way functions (or weaker primitives such as pseudorandom function-like states) are also proposed in some recent works [Morimae-Yamakawa, eprint:2022/1336; Coladangelo, eprint:2023/282; Grilo-Sattath-Vu, eprint:2023/345; Barooti-Malavolta-Walter, eprint:2023/306]. However, they have a huge drawback: they are secure only when quantum public keys can be transmitted to the sender (who runs the encryption algorithm) without being tampered with by the adversary, which seems to require unsatisfactory physical setup assumptions such as secure quantum channels. Our construction is free from such a drawback: it guarantees the secrecy of the encrypted messages even if we assume only unauthenticated quantum channels. Thus, the encryption is done with adversarially tampered quantum public keys. Our construction based only on one-way functions is the first quantum public-key encryption that achieves the goal of classical public-key encryption, namely, to establish secure communication over insecure channels.


翻译:我们从单向函数构建了量子公钥加密方案。在我们的方案中,公钥是量子的,但密文是经典的。近期一些研究也提出了从单向函数(或弱正则函数状态等)构建量子公钥加密的方案(Morimae-Yamakawa, eprint:2022/1336; Coladangelo, eprint:2023/282; Grilo-Sattath-Vu, eprint:2023/345; Barooti-Malavolta-Walter, eprint:2023/306)。然而,它们有一个巨大的缺陷:只有在量子公钥可以在不被对手篡改的情况下传递给发送方(运行加密算法的人)时才是安全的,这似乎需要不令人满意的物理设置假设,如安全量子信道。我们的方案没有这样的缺陷:它保证加密消息的保密性,即使我们只假设不存在认证的量子信道。因此,加密使用遭受敌方篡改的量子公钥。我们的方案仅基于单向函数,是第一个实现了传统公钥加密目标的量子公钥加密方案——即在不安全信道上建立安全通信。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
客户端私钥如何保存?
黑客技术与网络安全
13+阅读 · 2019年8月24日
通过Docker安装谷歌足球游戏环境
CreateAMind
11+阅读 · 2019年7月7日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
客户端私钥如何保存?
黑客技术与网络安全
13+阅读 · 2019年8月24日
通过Docker安装谷歌足球游戏环境
CreateAMind
11+阅读 · 2019年7月7日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员