Inference is the task of drawing conclusions about unobserved variables given observations of related variables. Applications range from identifying diseases from symptoms to classifying economic regimes from price movements. Unfortunately, performing exact inference is intractable in general. One alternative is variational inference, where a candidate probability distribution is optimized to approximate the posterior distribution over unobserved variables. For good approximations, a flexible and highly expressive candidate distribution is desirable. In this work, we use quantum Born machines as variational distributions over discrete variables. We apply the framework of operator variational inference to achieve this goal. In particular, we adopt two specific realizations: one with an adversarial objective and one based on the kernelized Stein discrepancy. We demonstrate the approach numerically using examples of Bayesian networks, and implement an experiment on an IBM quantum computer. Our techniques enable efficient variational inference with distributions beyond those that are efficiently representable on a classical computer.
翻译:根据对相关变量的观察,对未观测的变量作出结论是相关的变量的任务。应用范围从从症状确定疾病到将经济制度从价格波动分类不等。不幸的是,精确的推论一般难以解决。一个替代办法是变式推论,其中候选人的概率分布最优化,以近似未观测变量的后方分布。对于良好的近似值,有必要采用灵活和高度直观的候选变量分布。在这项工作中,我们使用量子生机器作为离散变量的变异分布。我们采用了操作者变异推理框架来实现这一目标。我们特别采用了两种具体的实现方法:一种是对抗目标,一种是以内嵌式斯坦差异为基础。我们用Bayesian网络的示例展示了数字方法,并在IBM量子计算机上进行了实验。我们的技术能够有效地变异推方法,其分布超出在古典计算机上能够有效代表的分布范围。