Carefully-designed prompts are key to inducing desired behavior in Large Language Models (LLMs). As a result, great effort has been dedicated to engineering prompts that guide LLMs toward particular behaviors. In this work, we propose an automatic prompt optimization framework, PROPANE, which aims to find a prompt that induces semantically similar outputs to a fixed set of examples without user intervention. We further demonstrate that PROPANE can be used to (a) improve existing prompts, and (b) discover semantically obfuscated prompts that transfer between models.
翻译:暂无翻译