Capturing highly appreciated star field images is extremely challenging due to light pollution, the requirements of specialized hardware, and the high level of photographic skills needed. Deep learning-based techniques have achieved remarkable results in low-light image enhancement (LLIE) but have not been widely applied to star field image enhancement due to the lack of training data. To address this problem, we construct the first Star Field Image Enhancement Benchmark (SFIEB) that contains 355 real-shot and 854 semi-synthetic star field images, all having the corresponding reference images. Using the presented dataset, we propose the first star field image enhancement approach, namely StarDiffusion, based on conditional denoising diffusion probabilistic models (DDPM). We introduce dynamic stochastic corruptions to the inputs of conditional DDPM to improve the performance and generalization of the network on our small-scale dataset. Experiments show promising results of our method, which outperforms state-of-the-art low-light image enhancement algorithms. The dataset and codes will be open-sourced.
翻译:由于光污染、专用硬件的要求和所需的高水平摄影技能,获取备受高度赞赏的恒星场图像极具挑战性。深层学习技术在低光图像增强方面取得了显著成果,但由于缺乏培训数据,尚未广泛应用于恒星场图像增强工作。为解决这一问题,我们建立了第一个星场图像增强基准(SFIEB),该基准包含355张真实照片和854张半合成恒星场图像,所有这些图像都具有相应的参考图像。我们利用所展示的数据集,提出了第一个恒星场图像增强方法,即基于有条件的去除扩散概率模型(DDPM)的StarDifmissution。我们引入了具有动态的DDPM的腐败,以改进我们小规模数据集网络的性能和总体化。实验显示了我们方法的有希望的结果,它超越了最先进的低光图像增强算法。数据集和代码将是公开来源的。