The Facial Action Coding System (FACS) encodes the action units (AUs) in facial images, which has attracted extensive research attention due to its wide use in facial expression analysis. Many methods that perform well on automatic facial action unit (AU) detection primarily focus on modeling various types of AU relations between corresponding local muscle areas, or simply mining global attention-aware facial features, however, neglect the dynamic interactions among local-global features. We argue that encoding AU features just from one perspective may not capture the rich contextual information between regional and global face features, as well as the detailed variability across AUs, because of the diversity in expression and individual characteristics. In this paper, we propose a novel Multi-level Graph Relational Reasoning Network (termed MGRR-Net) for facial AU detection. Each layer of MGRR-Net performs a multi-level (i.e., region-level, pixel-wise and channel-wise level) feature learning. While the region-level feature learning from local face patches features via graph neural network can encode the correlation across different AUs, the pixel-wise and channel-wise feature learning via graph attention network can enhance the discrimination ability of AU features from global face features. The fused features from the three levels lead to improved AU discriminative ability. Extensive experiments on DISFA and BP4D AU datasets show that the proposed approach achieves superior performance than the state-of-the-art methods.
翻译:面部动作编码系统(FACS)在面部图像中编码了行动单位(AUs),由于面部表现分析广泛使用,这引起了广泛的研究关注。在自动面部动作单位(AU)检测方面表现良好的许多方法,主要侧重于在相应的地方肌肉地区之间建立各种类型的非盟关系模型,或只是挖掘全球关注面部特征,忽视了地方-全球特征之间的动态互动。我们认为,仅仅从一个角度编码非盟的特征可能无法捕捉区域和全球面部特征之间的丰富背景信息,以及非盟之间由于表达和个体特征的多样性而出现的详细差异。在本文件中,我们提出了一个新的多层次图表关系解释网络(MGRR-Net),用于对非盟进行面部检测。MGRR-Net的每层都具有多层次(即区域层面、平级、双级和分级)的特征。尽管通过图形国家网络从地方面部位学的特征可以识别不同AUA、平级和分级系统能力网络之间的关联性关系。通过AUS-C-C-C-C-C-CFAL-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-L-C-C-C-SL-C-C-C-C-C-C-C-L-L-C-L-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S