Cross-architecture binary similarity comparison is essential in many security applications. Recently, researchers have proposed learning-based approaches to improve comparison performance. They adopted a paradigm of instruction pre-training, individual binary encoding, and distance-based similarity comparison. However, instruction embeddings pre-trained on external code corpus are not universal in diverse real-world applications. And separately encoding cross-architecture binaries will accumulate the semantic gap of instruction sets, limiting the comparison accuracy. This paper proposes a novel cross-architecture binary similarity comparison approach with multi-relational instruction association graph. We associate mono-architecture instruction tokens with context relevance and cross-architecture tokens with potential semantic correlations from different perspectives. Then we exploit the relational graph convolutional network (R-GCN) to perform type-specific graph information propagation. Our approach can bridge the gap in the cross-architecture instruction representation spaces while avoiding the external pre-training workload. We conduct extensive experiments on basic block-level and function-level datasets to prove the superiority of our approach. Furthermore, evaluations on a large-scale real-world IoT malware reuse function collection show that our approach is valuable for identifying malware propagated on IoT devices of various architectures.
翻译:跨建筑的二相相似性比较在许多安全应用程序中至关重要。 最近, 研究人员提出了以学习为基础的方法来改进比较性效绩。 他们采用了培训前教学、 个人二相编码和远程相似性比较的模式。 但是, 外部代码前培训的嵌入指令在不同的现实世界应用中并不普遍。 单独编码的跨建筑的二相将积累教学各组的语义差距, 限制比较的准确性。 本文建议采用新的跨建筑的二相类似性比较方法, 与多关系指令关联图形进行新的跨建筑的二相类似性比较方法。 我们把单一建筑教学符号与上下文相关性和跨建筑符号的范例联系起来, 与不同角度的潜在语义相关性联系起来。 然后, 我们利用关系图形图变网络(R- GCN ) 进行类型图象信息传播。 我们的方法可以弥合跨结构教学代表空间的差距, 同时避免外部培训前的工作量。 我们在基本区块级和功能级数据设置上进行广泛的实验, 以证明我们方法的优势。 另外, 大规模的I- 服务器 正在显示我们的宝贵再利用系统结构的系统。