Tech-leading organizations are embracing the forthcoming artificial intelligence revolution. Intelligent systems are replacing and cooperating with traditional software components. Thus, the same development processes and standards in software engineering ought to be complied in artificial intelligence systems. This study aims to understand the processes by which artificial intelligence-based systems are developed and how state-of-the-art lifecycle models fit the current needs of the industry. We conducted an exploratory case study at ING, a global bank with a strong European base. We interviewed 17 people with different roles and from different departments within the organization. We have found that the following stages have been overlooked by previous lifecycle models: data collection, feasibility study, documentation, model monitoring, and model risk assessment. Our work shows that the real challenges of applying Machine Learning go much beyond sophisticated learning algorithms - more focus is needed on the entire lifecycle. In particular, regardless of the existing development tools for Machine Learning, we observe that they are still not meeting the particularities of this field.


翻译:技术领导组织正在接受即将来临的人工智能革命。智能系统正在替换传统软件组件并与之合作。因此,在人工智能系统中应当遵守软件工程的相同开发过程和标准。本研究旨在了解人工智能系统开发的过程和最新生命周期模型如何适应该行业当前的需要。我们在一家拥有强大欧洲基础的全球银行ING进行了一项探索性案例研究。我们采访了17个不同角色和组织内不同部门的人。我们发现,以前的生命周期模型忽略了以下阶段:数据收集、可行性研究、文件、模型监测和模型风险评估。我们的工作表明,应用机器学习的实际挑战远远超出了复杂的学习算法,需要更加关注整个生命周期。特别是,不管机器学习的现有开发工具如何,我们发现他们仍然没有达到该领域的特点。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
207+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年7月23日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
4+阅读 · 2018年12月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2021年7月23日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
4+阅读 · 2018年12月3日
Top
微信扫码咨询专知VIP会员