Given a full fingerprint image (rolled or slap), we present CycleGAN models to generate multiple latent impressions of the same identity as the full print. Our models can control the degree of distortion, noise, blurriness and occlusion in the generated latent print images to obtain Good, Bad and Ugly latent image categories as introduced in the NIST SD27 latent database. The contributions of our work are twofold: (i) demonstrate the similarity of synthetically generated latent fingerprint images to crime scene latents in NIST SD27 and MSP databases as evaluated by the NIST NFIQ 2 quality measure and ROC curves obtained by a SOTA fingerprint matcher, and (ii) use of synthetic latents to augment small-size latent training databases in the public domain to improve the performance of DeepPrint, a SOTA fingerprint matcher designed for rolled to rolled fingerprint matching on three latent databases (NIST SD27, NIST SD302, and IIITD-SLF). As an example, with synthetic latent data augmentation, the Rank-1 retrieval performance of DeepPrint is improved from 15.50% to 29.07% on challenging NIST SD27 latent database. Our approach for generating synthetic latent fingerprints can be used to improve the recognition performance of any latent matcher and its individual components (e.g., enhancement, segmentation and feature extraction).
翻译:根据完整的指纹图像(滚动或拍耳光),我们展示了CypeGAN模型,以产生与完整打印相同身份的多重潜在印象。我们的模型可以控制生成的潜在潜在印刷图像的扭曲、噪音、模糊和隐蔽程度,以获得NISST SD27潜伏数据库中引入的Good、Bad和Ugly潜伏图像类别。我们的工作贡献有两个方面:(一) 显示合成生成的潜影图像与NIST SD27和MSP数据库中犯罪现场潜影的相似性,由NIST NFIQ 2质量计量和SOTA指纹匹配者获得的ROC曲线所评估,以及(二) 利用合成潜伏潜力来扩大小型潜在培训数据库,以改善DeepPrint的性能。SOTA指纹匹配者旨在在三个潜在数据库(NIST SD27、NIST SD302和IIITD-SLF)上滚动指纹匹配。例如,在合成潜伏数据增强的情况下,DeepPrent的级检索绩效从15.50%提高到29.07 %。我们使用的任何合成方法可以改进SDDSD27的深度提取部分。