Unlike conventional videos, 360{\deg} videos give freedom to users to turn their heads, watch and interact with the content owing to its immersive spherical environment. Although these movements are arbitrary, similarities can be observed between viewport patterns of different users and different videos. Identifying such patterns can assist both content and network providers to enhance the 360{\deg} video streaming process, eventually increasing the end-user Quality of Experience (QoE). But a study on how viewport patterns display similarities across different video content, and their potential applications has not yet been done. In this paper, we present a comprehensive analysis of a dataset of 88 360{\deg} videos and propose a novel video categorization algorithm that is based on similarities of viewports. First, we propose a novel viewport clustering algorithm that outperforms the existing algorithms in terms of clustering viewports with similar positioning and speed. Next, we develop a novel and unique dynamic video segment categorization algorithm that shows notable improvement in similarity for viewport distributions within the clusters when compared to that of existing static video categorizations.
翻译:与传统视频不同, 360\ deg} 视频让用户可以自由翻转头、观看和与内容互动, 原因是其隐蔽的球形环境。 虽然这些移动是任意的, 但不同用户的浏览模式和不同视频之间可以观察到相似之处。 识别这些模式可以帮助内容和网络提供方加强360\ deg}视频流过程, 最终提高终端用户的经验质量( QoE ) 。 但是, 有关视频模式如何显示不同视频内容的相似性及其潜在应用的研究尚未完成。 在本文中, 我们展示了对88360\ deg} 视频数据集的全面分析, 并提出了基于类似视图的新型视频分类算法。 首先, 我们提出一种新的浏览组合算法, 其在定位和速度相似的组合式视频分类中, 超越了现有的算法。 下一步, 我们开发了一种新型和独特的动态视频段分类算法, 与现有静态视频分类相比, 显示各组内视频分布相似性显著改善。