Controlling the behavior of language models (LMs) without re-training is a major open problem in natural language generation. While recent works have demonstrated successes on controlling simple sentence attributes (e.g., sentiment), there has been little progress on complex, fine-grained controls (e.g., syntactic structure). To address this challenge, we develop a new non-autoregressive language model based on continuous diffusions that we call Diffusion-LM. Building upon the recent successes of diffusion models in continuous domains, Diffusion-LM iteratively denoises a sequence of Gaussian vectors into word vectors, yielding a sequence of intermediate latent variables. The continuous, hierarchical nature of these intermediate variables enables a simple gradient-based algorithm to perform complex, controllable generation tasks. We demonstrate successful control of Diffusion-LM for six challenging fine-grained control tasks, significantly outperforming prior work.
翻译:控制语言模型的行为而不进行再培训是自然语言生成方面一个主要的公开问题。虽然最近的工作表明在控制简单的句子属性(例如情绪)方面取得了成功,但在复杂、细微的控制措施(例如合成结构)方面进展甚微。为了应对这一挑战,我们开发了一种新的非侵略语言模型,其基础是持续传播,我们称之为传播-LM。在连续域中传播模型的成功基础上,Difmulation-LM反复地将高斯矢量序列嵌入文字矢量中,产生一个中间潜伏变量序列。这些中间变量的连续等级性质使得基于梯度的简单算法能够执行复杂、可控的生成任务。我们展示了对Difmunic-LM成功控制六项具有挑战性的精细度控制任务的控制,大大超过先前的工作。