The optimal value of the projected successive overrelaxation (PSOR) method for nonnegative quadratic programming problems is problem-dependent. We present a novel adaptive PSOR algorithm that adaptively controls the relaxation parameter using the Wolfe conditions. The method and its variants can be applied to various problems without requiring a specific assumption regarding the matrix defining the objective function, and the cost for updating the parameter is negligible in the whole iteration. Numerical experiments show that the proposed methods often perform comparably to (or sometimes superior to) the PSOR method with a nearly optimal relaxation parameter.
翻译:预测连续连续超拉度(PSOR)方法对非负二次编程问题的最佳价值取决于问题。 我们展示了一种新的适应性PSOR算法,该算法使用沃尔夫特条件对放松参数进行适应性控制。 该方法及其变体可以适用于各种问题,而无需对界定客观功能的矩阵作出具体假设,在整个迭代中,更新参数的成本是微不足道的。 数字实验表明,拟议的方法往往与具有几乎最佳放松参数的PSOR方法相当(有时甚至优于PSOR方法)。