Flexible multivariate covariance models for spatial data are on demand. This paper addresses the problem of parametric constraints for positive semidefiniteness of the multivariate Mat{\'e}rn model. Much attention has been given to the bivariate case, while highly multivariate cases have been explored to a limited extent only. The existing conditions often imply severe restrictions on the upper bounds for the collocated correlation coefficients, which makes the multivariate Mat{\'e}rn model appealing for the case of weak spatial cross-dependence only. We provide a collection of validity conditions for the multivariate Mat{\'e}rn covariance model that allows for more flexible parameterizations than those currently available. We also prove that, in several cases, we can attain much higher upper bounds for the collocated correlation coefficients in comparison with our competitors. We conclude with a simple illustration on a trivariate geochemical dataset and show that our enlarged parametric space allows for better fitting performance with respect to our competitors.
翻译:需要空间数据灵活多变共变模型。 本文处理多变 Mat et' e}rn 模型正半无穷的参数限制问题。 大量关注双变情况, 而只对高度多变情况进行了有限的探讨。 现有条件往往意味着对合用相关系数的上限有严格的限制, 这使得多变 mat e}rn 模型只呼吁薄弱的空间交叉依赖情况。 我们为多变 Mat et' e}rn 共变模型提供了一系列有效性条件, 允许比现有参数更灵活的参数化。 我们还证明, 在若干情况下, 与竞争对手相比, 我们可以为合用相相关系数达到更高的上限。 我们最后简单用三变地球化学数据集来说明, 并表明我们扩大的参数空间可以使我们的竞争者更适合性。