Testing the simplifying assumption in high-dimensional vine copulas is a difficult task. Tests must be based on estimated observations and amount to checking constraints on high-dimensional distributions. So far, corresponding tests have been limited to single conditional copulas with a low-dimensional set of conditioning variables. We propose a novel testing procedure that is computationally feasible for high-dimensional data sets and that exhibits a power that decreases only slightly with the dimension. By discretizing the support of the conditioning variables and incorporating a penalty in the test statistic, we mitigate the curse of dimensions by looking for the possibly strongest deviation from the simplifying assumption. The use of a decision tree renders the test computationally feasible for large dimensions. We derive the asymptotic distribution of the test and analyze its finite sample performance in an extensive simulation study. The utility of the test is demonstrated by its application to six data sets with up to 49 dimensions.


翻译:测试必须基于估计的观测结果,并相当于检查高维分布的限制因素。 到目前为止,相应的测试仅限于单一的有条件的相阳管,且有一套低维的调节变量。我们建议采用一种新的测试程序,该程序在计算上对高维数据集是可行的,并且显示的能量仅与维度相比略有下降。通过分解调节变量的支持和在测试统计中加入一个罚则,我们通过寻找可能最强烈的偏离标准来减轻尺寸的诅咒。使用决定树使得测试在计算上可以适用于大维。我们从广泛的模拟研究中得出测试的无药性分布,并分析其有限的样本性能。测试的效用通过对最多49维的6个数据集的应用而得到证明。

0
下载
关闭预览

相关内容

官方網站: https://vine.co
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
55+阅读 · 2020年12月15日
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月30日
Arxiv
0+阅读 · 2021年4月29日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员