In recent years, the spread of fake videos has brought great influence on individuals and even countries. It is important to provide robust and reliable results for fake videos. The results of conventional detection methods are not reliable and not robust for unseen videos. Another alternative and more effective way is to find the original video of the fake video. For example, fake videos from the Russia-Ukraine war and the Hong Kong law revision storm are refuted by finding the original video. We use an improved retrieval method to find the original video, named ViTHash. Specifically, tracing the source of fake videos requires finding the unique one, which is difficult when there are only small differences in the original videos. To solve the above problems, we designed a novel loss Hash Triplet Loss. In addition, we designed a tool called Localizator to compare the difference between the original traced video and the fake video. We have done extensive experiments on FaceForensics++, Celeb-DF and DeepFakeDetection, and we also have done additional experiments on our built three datasets: DAVIS2016-TL (video inpainting), VSTL (video splicing) and DFTL (similar videos). Experiments have shown that our performance is better than state-of-the-art methods, especially in cross-dataset mode. Experiments also demonstrated that ViTHash is effective in various forgery detection: video inpainting, video splicing and deepfakes. Our code and datasets have been released on GitHub: \url{https://github.com/lajlksdf/vtl}.


翻译:近年来,假视频的传播给个人乃至国家带来了巨大影响。重要的是,为假视频提供可靠和可靠的结果。常规检测方法的结果并不可靠,对隐形视频来说并不可靠。另一种替代和更有效的方法是找到假视频的原始视频。例如,俄罗斯-乌克兰战争和香港法律修订风暴的假视频被原始视频所驳斥。我们使用改进的检索方法查找原视频,名为Vithash。具体地说,追踪假视频的来源需要找到独特的来源,而当原始视频中只有很小的差别时,这是困难的。为了解决上述问题,我们设计了一个全新的Hash Triplet损失损失。此外,我们设计了一个名为Localizator的工具,以比较原始追踪视频和假视频之间的差别。我们在Faceforensc+、Ceeb-DFake探测器上做了广泛的实验,我们还在所建的三个数据集上做了更多的实验:DAVIS2016-TL(视频的平面)、VSTL(VL)和DFL(S-Seral-deal)的检测方法比我们的Seral-dealdaldal)要好得多。在演示中展示了我们的各种视频/s-deal-deal-daldaldaldalds。我们的数据和DValdaldaldaldddaldds。在演示中也展示了。和DFDFDFDFDDisabs。我们展示了。我们展示了各种的检测方法。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
专知会员服务
58+阅读 · 2021年4月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
19+阅读 · 2020年12月23日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员