Video anomaly detection (VAD) is currently a challenging task due to the complexity of anomaly as well as the lack of labor-intensive temporal annotations. In this paper, we propose an end-to-end Global Information Guided (GIG) anomaly detection framework for anomaly detection using the video-level annotations (i.e., weak labels). We propose to first mine the global pattern cues by leveraging the weak labels in a GIG module. Then we build a spatial reasoning module to measure the relevance between vectors in spatial domain with the global cue vectors, and select the most related feature vectors for temporal anomaly detection. The experimental results on the CityScene challenge demonstrate the effectiveness of our model.
翻译:视频异常探测(VAD)目前是一项具有挑战性的任务,因为异常情况复杂,而且缺乏劳力密集型的时间说明。在本文件中,我们提议使用视频级别说明(即标签薄弱),建立端到端全球信息导线异常探测框架,以探测异常情况。我们提议首先利用GIG模块中的薄弱标签来挖掘全球模式信号。然后我们建立一个空间推理模块,以测量空间领域的矢量与全球导线矢量的相关性,并选择最相关的特性矢量用于时间异常探测。城市环境的实验结果展示了我们模型的有效性。