This paper develops a Bayesian computational platform at the interface between posterior sampling and optimization in models whose marginal likelihoods are difficult to evaluate. Inspired by adversarial optimization, namely Generative Adversarial Networks (GAN), we reframe the likelihood function estimation problem as a classification problem. Pitting a Generator, who simulates fake data, against a Classifier, who tries to distinguish them from the real data, one obtains likelihood (ratio) estimators which can be plugged into the Metropolis-Hastings algorithm. The resulting Markov chains generate, at a steady state, samples from an approximate posterior whose asymptotic properties we characterize. Drawing upon connections with empirical Bayes and Bayesian mis-specification, we quantify the convergence rate in terms of the contraction speed of the actual posterior and the convergence rate of the Classifier. Asymptotic normality results are also provided which justify inferential potential of our approach. We illustrate the usefulness of our approach on examples which have posed a challenge for existing Bayesian likelihood-free approaches.
翻译:本文开发了一个巴伊西亚计算平台,位于后方取样和优化之间的界面,这些模型的边际可能性难以评估。在对抗性优化的启发下,我们将概率函数估计问题重新设定为分类问题。将一个模拟假数据的发电机与一个分类器进行模拟,该分类器试图将其与真实数据区别开来,人们获得了可以插入大都会-哈斯廷斯算法的可能性(拉皮奥)测算器。由此产生的马尔科夫链条在稳定状态下从一个我们所描述的、近似无药性特性的近似后方生成样本。利用与贝斯和巴伊西亚地区经验性误差特性的联系,我们用实际远地点的收缩速度和分类器的趋同率来量化趋同率。还提供了可推断我们方法的潜在潜力的惯性正常性结果。我们举例说明了我们对目前巴伊斯地区无险性方法构成挑战的例子的实用性。