This work deals with the analysis of longitudinal ordinal responses. The novelty of the proposed approach is in modeling simultaneously the temporal dynamics of a latent trait of interest, measured via the observed ordinal responses, and the answering behaviors influenced by response styles, through hidden Markov models (HMMs) with two latent components. This approach enables the modeling of (i) the substantive latent trait, controlling for response styles; (ii) the change over time of latent trait and answering behavior, allowing also dependence on individual characteristics. For the proposed HMMs, estimation procedures, methods for standard errors calculation, measures of goodness of fit and classification, and full-conditional residuals are discussed. The proposed model is fitted to ordinal longitudinal data from the Survey on Household Income and Wealth (Bank of Italy) to give insights on the evolution of the Italian households financial capability.


翻译:这项工作涉及纵向或横向反应分析。拟议方法的新颖之处在于通过观察到的正反反应和受响应风格影响的反应行为,通过隐蔽的Markov模型(HMMs),通过两个潜在组成部分,同时模拟潜在兴趣特征的时间动态,通过隐蔽的Markov模型(HMMs),通过隐蔽的Markov模型(HMMs),通过两种潜在组成部分,进行以下模式的建模:(一) 实质性潜在特征,控制反应风格;(二) 潜在特质和应答行为随时间的变化,也允许依赖个人特征。对于拟议的HMMs,则讨论了估算程序、标准误差计算方法、适当性和分类的优劣度计量以及完全有条件的剩余物。拟议模型与《家庭收入和财富调查》(意大利银行)的垂直纵向数据相匹配,以洞察意大利家庭财政能力的演变。

0
下载
关闭预览

相关内容

隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。 其是在被建模的系统被认为是一个马尔可夫过程与未观测到的(隐藏的)的状态的统计马尔可夫模型。
专知会员服务
25+阅读 · 2021年4月2日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
4+阅读 · 2020年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
6+阅读 · 2018年2月7日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2020年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员