The widespread adoption of nonlinear Receding Horizon Control (RHC) strategies by industry has led to more than 30 years of intense research efforts to provide stability guarantees for these methods. However, current theoretical guarantees require that each (generally nonconvex) planning problem can be solved to (approximate) global optimality, which is an unrealistic requirement for the derivative-based local optimization methods generally used in practical implementations of RHC. This paper takes the first step towards understanding stability guarantees for nonlinear RHC when the inner planning problem is solved to first-order stationary points, but not necessarily global optima. Special attention is given to feedback linearizable systems, and a mixture of positive and negative results are provided. We establish that, under certain strong conditions, first-order solutions to RHC exponentially stabilize linearizable systems. Crucially, this guarantee requires that state costs applied to the planning problems are in a certain sense `compatible' with the global geometry of the system, and a simple counter-example demonstrates the necessity of this condition. These results highlight the need to rethink the role of global geometry in the context of optimization-based control.
翻译:工业界广泛采用非线性后地平线控制(RHC)战略已导致30多年的密集研究努力,为这些方法提供稳定性保障;然而,目前的理论保障要求每个(一般为非线性)规划问题都能够解决(近似)全球最佳性,这是在实际实施RHC时普遍使用的基于衍生物的地方优化方法的一个不切实际的要求。本文件是了解非线性RHC稳定性保障的第一步,因为当内部规划问题解决到第一阶固定点,但不一定是全球opima时。我们特别重视可线性反馈系统,并提供积极和消极结果的混合。我们确定,在某些强势条件下,RHC指数性稳定线性系统的第一阶解决办法。关键的是,这一保证要求用于规划问题的国家成本在某种意义上“与系统的全球几何方法相容”,而简单的反推论则表明这一条件的必要性。这些结果突出表明有必要重新思考全球几何测量在基于优化的控制范围内的作用。