Iterative random sketching (IRS) offers a computationally expedient approach to solving linear systems. However, IRS' benefits can only be realized if the procedure can be appropriately tracked and stopped -- otherwise, the algorithm may stop before the desired accuracy is achieved, or it may run longer than necessary. Unfortunately, IRS solvers cannot access the residual norm without undermining their computational efficiency. While iterative random sketching solvers have access to noisy estimates of the residual, such estimates turn out to be insufficient to generate accurate estimates and confidence bounds for the true residual. Thus, in this work, we propose a moving average estimator for the system's residual, and rigorously develop practical uncertainty sets for our estimator. We then demonstrate the accuracy of our methods on a number of linear systems problems.
翻译:迭生随机草图(IRS)为解决线性系统提供了一种快速计算的方法。然而,IRS的效益只有在程序能够适当跟踪和停止的情况下才能实现,否则算法可能会在达到预期的准确性之前停止,或者可能超过必要时间。不幸的是,IRS解答者无法在不破坏计算效率的情况下进入剩余规范。虽然迭生随机草图解答者能够获得对残余的杂乱估计,但这种估计结果却不足以产生准确的估计和真实残余的信任界限。因此,在这项工作中,我们建议系统剩余部分的移动平均估计器,并严格地为我们的估计器制定实际的不确定性。然后,我们展示了我们在若干线性系统问题上的方法的准确性。