Minimum Excess Risk (MER) in Bayesian learning is defined as the difference between the minimum expected loss achievable when learning from data and the minimum expected loss that could be achieved if the underlying parameter $W$ was observed. In this paper, we build upon and extend the recent results of (Xu & Raginsky, 2020) to analyze the MER in Bayesian learning and derive information-theoretic bounds on it. We formulate the problem as a (constrained) rate-distortion optimization and show how the solution can be bounded above and below by two other rate-distortion functions that are easier to study. The lower bound represents the minimum possible excess risk achievable by \emph{any} process using $R$ bits of information from the parameter $W$. For the upper bound, the optimization is further constrained to use $R$ bits from the training set, a setting which relates MER to information-theoretic bounds on the generalization gap in frequentist learning. We derive information-theoretic bounds on the difference between these upper and lower bounds and show that they can provide order-wise tight rates for MER. This analysis gives more insight into the information-theoretic nature of Bayesian learning as well as providing novel bounds.


翻译:在Bayesian学习中,最低超值风险(MER)的定义是,从数据中学习时可实现的最低预期损失与如果遵守基本参数(W$)可实现的最低预期损失之间的差别。在本文中,我们利用并扩展了Bayesian学习中的最新结果(Xu & Raginsky,2020年),分析Bayesian学习中的最低预期损失,并由此得出信息理论界限。我们将问题表述为(受限制的)率扭曲优化,并表明解决方案如何被更容易研究的另外两个率扭曲功能所约束。下限是指使用参数(W$美元)所实现的最低可能超额风险。对于上限而言,优化还进一步限制了使用Bayesian学习中的MER(Xu & Raginsky,2020年)的最近结果(Xu & Raginsky,2020年),从培训集中提取了1美元的数据界限(R$),这一背景将MER(MER)与关于经常学习中一般差距的信息-理论界限联系起来。我们从中获取关于这些上下层和下边框之间的差异的信息理论界限,并表明它们能够提供更精确的深度的深度的深度的深度分析。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员