The increased amount of multi-modal medical data has opened the opportunities to simultaneously process various modalities such as imaging and non-imaging data to gain a comprehensive insight into the disease prediction domain. Recent studies using Graph Convolutional Networks (GCNs) provide novel semi-supervised approaches for integrating heterogeneous modalities while investigating the patients' associations for disease prediction. However, when the meta-data used for graph construction is not available at inference time (e.g., coming from a distinct population), the conventional methods exhibit poor performance. To address this issue, we propose a novel semi-supervised approach named GKD based on knowledge distillation. We train a teacher component that employs the label-propagation algorithm besides a deep neural network to benefit from the graph and non-graph modalities only in the training phase. The teacher component embeds all the available information into the soft pseudo-labels. The soft pseudo-labels are then used to train a deep student network for disease prediction of unseen test data for which the graph modality is unavailable. We perform our experiments on two public datasets for diagnosing Autism spectrum disorder, and Alzheimer's disease, along with a thorough analysis on synthetic multi-modal datasets. According to these experiments, GKD outperforms the previous graph-based deep learning methods in terms of accuracy, AUC, and Macro F1.


翻译:多式医疗数据数量的增加为同时处理诸如成像和非成像数据等各种模式提供了机会,从而可以同时处理各种模式,如成像和非成像数据,从而全面了解疾病预测领域。最近利用“图表革命网络”进行的研究提供了在调查病人疾病预测协会的同时整合多种不同模式的新半监督方法。然而,当在推论时间(例如,来自不同人口)无法提供用于图形构造的元数据时,常规方法表现不佳。为了解决这一问题,我们提议以知识蒸馏为基础,采用名为“GKD”的新型半监督方法。我们培训了一个教师部分,该部分除了深层神经网络之外,还使用了标签调整算法算法算法算法,只在培训阶段才从图表和非成法模式中受益。教师部分将所有可用信息嵌入软假标签中。软假标签被用来培训一个深层次的学生网络,用于对无法使用图表模式的不可见测试数据进行疾病预测。我们用两个公共数据集进行了实验,用于对A型基因分析、A型光谱学模型和A类基因模型进行全面数据分析。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
172+阅读 · 2020年2月13日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
102+阅读 · 2020年3月4日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
172+阅读 · 2020年2月13日
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
Top
微信扫码咨询专知VIP会员